EPICS device support for Abaco reflective memory

Note that, before setting up this module, you should install the rfm2g, which is the
device/driver provided by Abaco.

We confirm that this module works under the condition, CentOS 7.9 (kernel 3.10.0-
1160.e17.x86_64) and EPICS 3.15.8.

Download the device support for drvrm5565pci
https://cerldev.kek.jp/trac/EpicsUsers]P/attachment/wiki/epics/pcie5565/drvrm5565pci-
221110.tar.gz

How to build drvrm5565pci

® Unpack drvrm5565pci-YYMMDD.tar.gz
$ tar xzf drvrm5565pci-YYMMDD.tar.gz

® Edit configure/RELEASE and modify EPICS_BASE for your condition
$ cd drvrm5565pci

$ vi configure/RELEASE

EPICS_BASE should appear last so earlier modules can override stuff:
EPICS_BASE = /opt/epics/R3-15-8/base < modify here

® Edit drvrm5565App/src/Makefile and include rfm2g in your condition

ADD RULES AFTER THIS LINE
RELEASE_INCLUDES += -I/ust/lib64/rfm2g <« modify here
® Buildit

$ make

How to build IOC

® Specify the directory of drvrm5565pci on configure/RELEASE
DRVRM5565 = $(EPICS_BASE)/../modules/drvrm5565pci < add

® Add drvrm5565pci.dbd at <prod name>_DBD of src/Makefile

(Following example assumes <prod_name> is rmioc)
Build the IOC application
PROD_IOC = rmioc

Include dbd files from all support applications:
rmioc_DBD += drvrm5565pci.dbd < add

® Add drvrm5565pci at <prod_name>_LIBS of src/Makefile
Build the IOC application
PROD I0OC = rmioc

Add all the support libraries needed by this IOC
rmioc_LIBS += drvrm5565pci < add

® Add followings at the last line of src/Makefile

include $(TOP)/configure/RULES

ADD RULES AFTER THIS LINE

RELEASE_INCLUDES += -I/usr/lib64/rfm2g < add

PROD_DEPLIB_DIRS += /usr/lib64/rfm2g < add

EPICS_BASE_IOC_LIBS += rfm2g < add
® Buildit

How to use
Add followings on the start-up script
RM5565PciConfigure(<>card>, <devpath>)

<card>: card number, it should not be overlapped
This number is used also at the EPICS db file.
<devpath> : Specify the device path. Usuary, it is /dev/rfm2g*

Example,
RM5565PciConfigure(0, “/dev/rfm2g0”)

How to make db file

How to read the data from the reflective memory with the aai record.

record(aai, "pv-name") {
field(DTYP, "aai5565")
field(INP, "#C<card_number> S @<offset>")
field(FTVL, "<value_type>")
field(NELM, "<num_of_elems>")
}
(The name of device type should be “aai5565”.)
® card_number: The card number designated in argument card in RM5565PciConfigure
® offset: Offset of RM5565 memory
® value_type: Field Type of Value
[

num_of elems: Number of elements

Example

record(aai, "RM5565:DEV0:A000:R") {
field(DTYP, "aai5565")
field(INP, "#CO0 S @0xA000")
field(FTVL, "LONG")
field(NELM, "1")

}

Specify the card number and the address offset in the INP field

The card number and address should be specified after “C” and “@”, respectively.

In above case, the 32 bit data are taken out from the address offset 0OxA000 of the reflective

memory. Then, it is stored in the VAL field.

How to write the data to the reflective memory with the aao record

record(aao, "pv-name") {
field(DTYP, "aa05565")
field(OUT, "#C<card number> S @<offset>,<wait>")
field(FTVL, "<value_type>")
field(VAL, "<data>")
field(NELM, "<num_of _elems>")
}
(The name of device type should be “aa05565”.)
card_number: The card number designated in argument card in RM5565PciConfigure
offset: Offset of RM5565 memory
wait: Waiting time for completion of write (unit in sec)
value_type: Field Type of Value

num_of elems: Number of elements

data: data to write

Example

record(aao, "RM5565:DEV0:A000:W") {
field(DTYP, "aa05565")
field(OUT, "#CO0 S @0xA000,1.0")
field(FTVL, "SHORT")
field(NELM, "1")

field(VAL, "<data>")
}
Specify the card number and the address offset in the OUT field
The card number and address should be specified after “C” and “@”, respectively.
In above case, the 32 bit data are written into the address offset 0xA000 of the reflective

memory.

Network interruption with the reflective memory

Note, the inttx and intrx records are used together for the network interruption.

record(intrx, "pv-name") {
field(DTYP, "intrx5565")
field(SCAN, "I/O Intr")
field(OINP, "#C<card_number> S<int_type> @")
field(SNAM, "<subroutine_name>")
}
(The name of device type should be “intrx5565”.)
record(inttx, "pv-name") {
field(DTYP, "inttx5565")
field(OUT, "#C<card_number> S<int_type> @")
field(NID, "<target_node>")
field(VAL, "<data>")
}
(The name of device type should be “inttx5565”.)
® card_number: The card number designated in argument card in RM5565PciConfigure
® int_type: the Network-interruption type (should be assign 1-4). You can configure the 4
types of the network interruption on the one reflective memory network.
® target_node: the ID for the destination node. (If NID=256, the interruption is delivered
all nodes in the network.)
® subroutine_name: the subroutine which are implemented with the node receives the
network interruption.

® data: data which are transferred with the interruption

Example

record(inttx, "RM5565:DEV0:INT1:TX") {
field(DTYP, "inttx5565")
field(OUT, "#C0S1@")

}
record(intrx, "RM5565:DEV1:INT1:RX") {
field(DTYP, "intrx5565")
field(SCAN, "I/O Intr")
field(INP, "#C0S1 @")
field(SNAM, "int1func")

}

Above two PVs are configured in the different reflective memory IOC.
When we process “RM5565:DEVO:INT1:TX”,

1. Type-1 network interruption is launched in the network.

2. “RM5565:DEVI:INT1:RX” is processed with the network interruption

3. Then, the subroutine “int1func” is processed.

Error monitoring

The error status can be monitored with the longin record.
record(longin, "pv-name") {
field(DTYP, "H/W error")
field(SCAN, "I/O Intr")
fieldINP, "#C<card_number> S @<error_type>[,<severity>]")
¥
(The name of device type should be “H/W error”)
® card_number: The card number designated in argument card in RM5565PciConfigure
® error_type:
BadData ... Bad Data
FIFOFull ... RX FIFO Full
RogueDet ... Rogue Packet Detected and Removed
FIFOAFull ... RX FIFO Almost Full
SyncLoss ... Sync Loss
® severity
NO_ALARM ... NO_ALARM
MINOR ... MINOR_ALARM
MAJOR ... MAJOR_ALARM
INVALID ... INVALID_ALARM

Example,

record(longin, "RM5565:DEV0:BadData") {
field(DTYP, "H/W error")
field(SCAN, "I/O Intr")
field(INP, "#CO S @BadData, MINOR")

}

Specify the card number, error type, and severity in the INP field. In this case, the PV detects
the error type “BadData”. The PV is processed and the value in the VAL field is increased

when the “BadData” error is occurred.

